Introduction to AI-ML
You will understand how machines learn and how algorithms can be trained to make predictions, types of Machine Learning algorithms and decisions based on data.
Course Information
-
Module 1
Probability Introduction Part1 (00:16:42)
Probability Introduction Part 2 (00:08:16)
Probability Introduction Part 3 (00:13:15)
Sample Space (00:17:51)
Distributions 1 (00:03:58)
Distributions 2 (00:04:50)
Total probability rule Concept (00:01:44)
conditional probability Concept (00:02:16)
Bernoulli process Concept (00:02:02)
Test (00:00:00)
-
Module 2
General Random variable (00:08:38)
Discrete Random Variable (00:17:58)
Variance (00:12:38)
Covariance and Correlation part 1 (00:08:22)
Covariance and Correlation part 2 (00:05:43)
Random variable Concept (00:01:39)
covariance and correlation Concept (00:02:16)
Module 2 Test (00:00:00)
-
Module 3
Inequalities and Law of Large Numbers (00:14:33)
The Central Limit theorem part1 (00:08:44)
The Central Limit theorem part2 (00:05:46)
Module 3 Test (00:00:00)
-
Module 4
Point Estimate part1 (00:09:39)
Point Estimate part2 (00:03:11)
Maximum likelihood Estimation (00:05:32)
Interval Estimate part1 (00:39:16)
Interval Estimate part2 (00:08:41)
Hypothesis testing Concept (00:01:47)
Hypothesis_Testing_1 (00:12:23)
Interval Estimation_AI_ML Concept (00:02:29)
Hypothesis_Testing_2 (00:16:20)
Hypothesis_Testing_3 (00:08:23)
Hypothesis_Testing_4 (00:13:28)
Hypothesis_Testing_5 (00:17:02)
Module 4 Test (00:00:00)
-
Projects
Projects_1 (00:16:41)
Projects_2 (00:13:02)
Projects_3 (00:13:45)
-
Module 5
Introduction (00:10:33)
What is Machine Learning (00:12:56)
Supervised Learning (00:20:17)
Unsupervised Learning (00:13:06)
Introduction (00:07:15)
linear Regression Hypothesis Function (00:16:19)
Linear Regression Cost Function (00:09:56)
Linear Regression Gradient Descent (00:12:56)
Linear Regression Gradient Descent part 2 (00:09:28)
Recap Linear Regression (00:09:28)
Linear regression Practical Code (00:20:17)
Linear regression Practical Code 2 (00:10:13)
Linear Algebra Review (00:17:59)
Matrix-Vector Mulitplication (00:18:59)
Linear regression with Multiple Variables (00:15:22)
Linear regression with Multiple Variables (Gradient Descent) (00:11:31)
Feature Normalization (00:13:08)
Linear regression with Multiple Variables Code (00:16:01)
Polynomial Regression (00:15:52)
Normal Equation (00:13:56)
Linear Regression (concept) (00:02:00)
Linear Algebra Concept (00:02:00)
Module 5 Test (00:00:00)
Polynomial Regression-2 (00:08:11)
Supervised and Unsupervised learning Concept (00:02:14)
Assignment Module5 (00:00:00)
-
Module 6
Logistic Regression and Binary classification (00:20:59)
Decision Boundary (00:21:47)
Multiclass Classification (00:14:33)
Multiclass Classification Problems Code (00:10:57)
Binary Classification Problem Steps (00:19:59)
Regularization (00:17:53)
Regularized Logistic Regression (00:03:05)
Cost Function (00:11:36)
Housing price Example (00:07:27)
Non-Linear Hypotheses (00:10:30)
Neurons and the brain (00:22:27)
Neural Networks-Model Representation-1 (00:03:08)
Logistic Regression Concept (00:02:00)
Multiclass Classification Concept (00:02:00)
Binary Classification Concept (00:02:00)
Module 6 TEST (00:00:00)
Multiclass Classification (00:10:23)
Assignment Module6 (00:00:00)
-
Module 7
Neural Networks Model representation-1 (00:12:09)
Neural Networks-Model Representation-1 (00:07:55)
Neural Networks-Model Representation 2 (00:26:25)
Neural Networks Example (00:08:21)
Example for Neural Network (00:17:41)
Keras Model (00:12:58)
Kearas Model Example (00:16:22)
Keras Model Example2 (00:11:04)
Neural network Code (00:03:10)
Example (00:09:53)
Sigmoid Function (00:06:26)
Derivative (00:12:45)
Sigmoid Function Example (00:21:31)
Train Function (00:11:07)
Prediction Function (00:13:00)
Multiclass Classification in Neural Network (00:09:17)
Multiclass Classification (00:12:11)
Cost function Changes (00:15:19)
Advice for Applying Machine Learning (00:16:07)
Model Selection (00:15:18)
Diagnosing Bias vs Variance (00:14:58)
Regularization in multiclassification (00:17:52)
Practical coding (00:13:52)
practical Coding 2 (00:15:22)
Practical Coding 3 (00:12:22)
Practical Coding 4 (00:16:11)
K-Means Algorithm (00:14:10)
K-Means algorithm (Contd) (00:16:57)
K-Means algorithm Features (00:08:43)
Optimization of K-Means Algorithm (00:16:41)
K-Means steps (00:18:32)
K-Means Practical Code (00:24:02)
K-Means Practical Code (Contd) (00:15:06)
K Means Algorithm Concept (00:02:00)
Module 7 test (00:00:00)
Debugging Learning Algorithm (00:10:45)
Error Analysis (00:16:26)
Feed Forward (00:21:34)
Assignment Module7 (00:00:00)
-
Module 8
Example 1 (00:10:56)
Example 2 (00:15:37)
Anomaly Detection (00:18:21)
Gaussian Distribution (00:12:17)
Developing & Evaluating Anomaly Detection System (00:14:48)
Developing & Evaluating Anomaly Detection System-2 (00:22:27)
Multivariate Gaussian Distribution (00:07:38)
Multivariate Gaussian Distribution Example (00:09:52)
Learning With Large Datasets (00:13:52)
Mini batch Gradient Discent (00:17:54)
Online Learning (00:21:31)
TEST (00:00:00)
Assignment Module8 (00:00:00)
-
Final Certification Examination
Final Test (00:00:00)
Course Content
Authors
Rajesh Mayya
Agrim Jain
15 DAYS ACCESS
₹0
Start learning today! Switch to full course access, when satisfied with the trial.
PROJECT
Data Modeling with Postgres
In this project, you’ll model user activity data for a music streaming app called Sparkify. You’ll create a relational database and ETL pipeline designed to optimize queries for understanding what songs users are listening to. In PostgreSQL you will also define Fact and Dimension tables and insert data into your new tables.